Automated Testing and Marking of
Student Programs:

Using Web-CAT with Python and
Java Assignents

Quick History of Automated Marking
of Student Programs

« Farliest I have found: J. Hollingsworth,
“Automatic Graders for Programming
Classes”, Communications of the ACM,
October, 1960. Used punch cards.

« Papers I have found
— 1960-1970: 3 papers
— 1970-1980: 1 paper
— 1980-1990: 11 papers
— 1990-2000: 28 papers
— 2000-present: 41+ papers

Reason #8 to Automate Marking

* Time
— Assume 100 students in the class; 1 marked

assignment every two weeks; 5 minutes to
process each assignment

— 100 students/assigmnent * 5 minutes/student * 1
hours/60 minutes = 8.3 hours/assignment (~1 day)

— 8.3 hours/assighment * 7 assighments/semester *
2 semesters/year * 8 hours/working day
= 14.5 working days/year

Reason #7 to Automate Marking

* Consistent Marking of Assignments
— Inter-rater and intra-rater reliability is difficult

— Inter-rater: agreement among different people
rating (marking) an artifact (document, program,
painting, poem, etc.)

— Intra-rater: agreement by the one person rating

the same or an equivalent artifact at different
different points in time

Reason #6 to Automate Marking

 Makes it possible for students to rework the
assignments and achieve mastery

— It is demanding for an instructor to mark one
submission per student.

— | have read about a few instructors who tried
saying “If you submit your program early, | will
mark it and return it to you. Then you can fix the
errors and resubmit it before the deadline.”

— Those instructors only try that policy once!

Reason #5 to Automate Marking

 Makes it possible for students to know their
marks right away

— Students can submit code and be marked
immediately at any time, even 3:17am

— Students are happier
— Instructor is happier

Reason #4 to Automate Marking

e Makes it reasonable to do continuous
assessment

— Frequent programming assignments are important
for continuous assessment

— Marking those assignments “by hand” discourages
instructors from doing continuous assessment

— Automated marking is a good tool for continuous
assessment

Reason #3 to Automate Marking

* Makes it reasonable to assign more complex
problems

— With hand marking, “time-to-grade” can dominate
the decision about what to assign

— Should be based on what is most useful to the
students

— Automated marking essentially eliminates the
time-to-grade issue

Reason #2 to Automate Marking

 Makes it easier to teach students to test their
own code well
— With some systems — such as Web-CAT — students

can be forced to write and submit their own test
suites

— This can be used even in the first year to teach
students superior software development habits

Reason #1 to Automate Marking

* Makes it possible to retain your sanity

— | have had the privilege of marking assignments
for a module with 120 students

— Afterwards, | was almost willing to find a new job

as a garbage collector in order to avoid the
marking

http://www.edupics.com/en-coloring-pictures-pages-photo-garbage-collector-i6567.html

What Not to do With Automated

Marking

* The Halting Problem

— “Given a description of a program and a finite input,
decide whether the program finishes running or will run
forever, given that input.”

— “Alan Turing proved in 1936 that a general algorithm to
solve the halting problem for all possible program-input
pairs cannot exist.”

— In general, no program — given the source code for other
programs — can determine for all other programs whether

they will even stop, let alone whether they are “correct”.

* Implication: do not try to have an automated program
read the source for other programs and determine
whether they are correct

http://en.wikipedia.org/wiki/Halting_Problem

How Automated Marking is Typically
Done

* Approach #1: Black box input/output testing
— Run the compiled program

— Feed it input selected carefully so as to test typical
cases and boundary cases

— Compare program output to known correct output
for those input cases

— Run a timer to catch infinite loops

* This is how ACM programming contests verify
results

How Automated Marking is Typically
Done

* Approach #2: Measure changes in program
state
— Set program state (precondition)
— Run a particular function

— Verify that program stated changed correctly
(postcondition/results)

— How unit testing is done

How Automated Marking is Typically
Done

3: Static analysis (analyze non-running code)

— Have programs verify program style, internal
documentation, etc.

— Relatively sophisticated free tools available (especially
for Java)

4: When students write their own unit tests, can
do coverage analysis

5: Verify correct dynamically allocated memory
usage

6: Anything else useful that can be automated

The xUnit Testing Approach

e SUnit: Unit testing framework for Smalltalk by
“the father of Extreme Programming”, Kent
Beck.

* xUnit: JUnit, CppUnit, CxxUnit, NUnit, PyUnit,
XMLUnit, etc.

e xUnit architecture is an entire talk by itself!

Web-CAT

Dr. Stephen Edwards at Virginia Tech
developed Web-CAT to support automated
marking of student programs and student-
written tests

Built my own system (Touché Autograder)

More advantageous for the university
community to participate in his better-known,
better-funded, and more advanced project

Web-CAT Premier Award Presentation

Use plug-
ins for a
variety of
languages,
or write
your own!

_—

Web-CAT:

Grade it your way

You decide the balance between

automated grading and manual inspection

T
rading Schem Il Instances

/

ission Rules: ' 1705 submission--Deliverable —:—13 New 0

Automatisally grade using these steps in sequence:

Decide
when and
how
students
can
submit,
including
early
bonuses
and late
penalties

Plug-in settings and submission policies
can be reused over and over

Plug-in Time Limit (sec) Move Action
1 JavaTddPlugin 300 A =Ha
Add| Add another step /
o /
—L

Parameterized plug-ins further
extend your options

Web-CAT:
Instant results

PYUELTGEN I CS 1705(11689): Program 3: URLHarvester try #19

Students see results Name I

1 1 LT - 03/25/07 05:07PM, 6 hrs, 47 mins early
In thelr Web browser LCICIRITEN 88.3/100.0
Wlth I n m I n utes ~ Grading complete? | Regrade Submissior} View Other Submission%

Score Summary
Design/Readability: 34.0 /40.0
/Sgylelcoding: 20.0/20.0

[|
Scoring overview is T T =

baCked Up by sition in class: ™ = _ (Show Graphs
detailed line-by-line -

Q =l README.TXT 0 0.0

results in each file © = URLHarvester.java 2 4.0 100.0%
@ = URLHarvesterTest.java 2 -2.0 100.0%

Printable Report

TA/Instructor Commenis

Add Overa” zg:;;ntinq/n.aming/stylc Good 8/10 :'
Reqguired Behavior Good 8/10
E i /
comments, or Sacifn/absteaction Bxcellent 10/10
Automated Style Checks Excellent 20/20
Write detailed Correctness/Testing Good 34.3/40
e Aetdiit N 2e-3/100
info in-line in
. GTA: Matthew Thornton
d job.
source files Good 20 F

Web-CAT: Comment on student

code

Assignment
Name
Submitted

Total Score
File Name
File Score

Add Comments to This File

88.3/100.0
URLHarvester.java
-4.0 points lost

CS 1705(11689): Program 3: URLHarvester try #19

03/25/07 05:07PM, 6 hrs, 47 mins early

Combine manual

code inspection with
automated grading

Save & Continue

107

108
109
110
111
112 2
113 2
114

115 2
116 2

while (initial != null)

© Error [Matthew Thornton] : -2.0
A lot of the functionality of this loop could have been put into the previous control structure Ygifonly need one primary looping structure in this]
method and then a loop within that loop.

{
initial = getNextHrefURL(in);
if (initial != null)
{

outStream.println(initial);

if (initial.substring(0, 4).equals("“http"))

{

InputStream deepStream = new URL(initial).openStream();
Scanner inDeepStream = new Scanner(deepStream);

Deductions TA Tools/Testing

URLHarvester -4.0 0.0 -4.0 Save & Finish Later

others -2.0 -2.0 -4.0 Save & Mark Done

Total -6.0 -5.7 -11.7 88.3/100.0 Cancel
_”36 :9 Select from previous comments _” Error T‘ To Everyone

102 0 outStream.println(” + deep); N
103

104

105

106

Leverage industrial-
strength tools to run
tests, measure code
coverage, and check
style guidelines

WYSIWYG
comment
editing right
in your
browser

Web-CAT Demonstration

* Python
* Java

* Depending on time, demonstrate PyUnit and
JUnit from the command-line

References

Unit testing:
http://en.wikipedia.org/wiki/Unit testing
xUnit: http://en.wikipedia.org/wiki/XUnit

Web-CAT home:
http://web-cat.cs.vt.edu/WCWiki/

"Simple Smalltalk Testing", in Kent Beck’s
Guide to Better Smalltalk, Donald G. Firesmith
Ed., Cambridge University Press, 1998.

JUnit: http://junit.org

